$$
\sigma = \sqrt{ \sigma_{shot}^2 + n_{\text{bin}}\sigma_{dark}^2 + \sigma_{quantization}^2 + n_{\text{bin}}\sigma_{read}^2 }
$$
Where
- $\sigma$ [electron]: Net noise.
- $\sigma_{shot}$ [electron]: Shot Noise.
- $n_{bin}$: Number of binning operations.
- $\sigma_{dark}$ [electron px-1]: Mean Dark Signal.
- $\sigma_{quantization}$ [electron]: Quantization Noise.
- $\sigma_{read}$ [electron]: Read noise, as specified by the sensor manufacturers.
Expanding the noise terms:
$$
\sigma(\lambda) = \sqrt{\sqrt{{s_{target}(\lambda)}}^2 + n_{\text{bin}}(i_{dark}\Delta t)^2 + (\frac{1}{\sqrt{12}} \frac{n_{well}}{2^n_{bit}})^2 + n_{\text{bin}}\sigma_{read}^2 }
$$
Where
- $\sigma(\lambda)$ [electron]: Net noise.
- $s_{target}(\lambda)$ [electron2]: Signal level.
- $n_{bin}$: Number of binning operations.
- $i_{dark}$ [electron s-1]: Dark current.
- $\Delta t$ [s]: Integration time.
- $n_{well}$ [electron]: Well depth.
- $\sigma_{read}$ [electron]: Read noise, as specified by the sensor manufacturers.